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Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive 

impairment of memory and other cognitive functions. Currently, many multi-task learning 

approaches have been proposed to predict the disease progression at the early stage using 

longitudinal data, with each task corresponding to a particular time point. However, the underlying 

association among different time points in disease progression is still under-explored in previous 

studies. To this end, we propose a multi-task exclusive relationship learning model to 

automatically capture the intrinsic relationship among tasks at different time points for estimating 

clinical measures based on longitudinal imaging data. The proposed method can select the most 

discriminative features for different tasks and also model the intrinsic relatedness among different 

time points, by utilizing an exclusive lasso regularization and a relationship induced regularization. 

Specifically, the exclusive lasso regularization enables partial group structure feature selection 

among the longitudinal data, while the relationship induced regularization efficiently introduces 

the relationship information from data to guide knowledge transfer. We further develop an efficient 

optimization algorithm to solve the proposed objective function. Extensive experiments on both 

synthetic and real datasets demonstrate the effectiveness of our proposed method. In comparison 

with several state-of-the-art methods, our proposed method can achieve promising performance for 

cognitive status prediction and also can help discover disease-related biomarkers.
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1. Introduction

Alzheimer’s disease (AD), characterized by progressive impairment of memory and 

cognitive functions, is the most common type of dementia in elderly people. As life 

expectancy increases, the number of AD patients will also increase correspondingly, 

resulting in a heavy socio-economic burden (Fan et al., 2008). It was reported that there are 

26.6 million AD cases in the world in 2006, and about 56% of the cases are at the early stage 

(called mild cognitive impairment, MCI). In 2050, the AD population will increase to over 

100 million (Brookmeyer et al., 2007). With the need for markers that can track the progress 

of the disease becomes increasingly urgent, many research groups have devoted their efforts 

to improve the understanding and monitoring of AD progression (Liu et al., 2015; Hinrichs 

et al., 2011; P et al., 2009).

Neuroimaging has proven to be a powerful tool for characterizing the neurodegenerative 

process of AD (Stonnington et al., 2010a; Wang et al., 2012a; Lian et al., 2019, 2018). In 

recent decades, neuroimaging-based longitudinal studies have been widely investigated to 

predict cognitive status, using data at multiple time points. Many cognitive measures have 

been designed to evaluate the cognitive decline, e.g., the Mini Mental State Examination 

(MMSE) and the Alzheimer’s Disease Assessment Scale Cognitive subscale (ADAS-Cog), 

which can be used to partially reveal AD progression. It has been reported that MMSE is 

correlated with the underlying AD pathology and neurodegenerative mechanism (Petrella et 

al., 2003), and ADAS-Cog is the gold standard in AD drug trial for cognitive function 

assessment (Rosen et al., 1984). However, to accurately predict the progression of AD/MCI 

remains a challenging task, since it is difficult to model the association between imaging 

features and a specific cognitive measure at multiple time points.

To address the above challenges, there already exist several feature selection efforts 

dedicated to AD disease progression modeling, which have been demonstrated as a useful 

way to reflect the association among prediction tasks at multiple time points. These efforts 
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generally fall into two categories:1) single-task learning, and 2) multi-task learning. In the 

first category, the disease progression at different time points is estimated separately. That is, 

neither the association between imaging features and a specific task nor the correlation 

among tasks is explored in single-task learning. For instance, Duchesne et al. (Duchesne et 

al., 2009) proposed to use robust linear regression model to predict one-year MMSE changes 

from baseline magnetic resonance imaging (MRI) data, and revealed that the baseline MRI 

data are highly associated with one-year cognitive changes. Wang et al. (Wang et al., 2010) 

developed a linear relevance vector regression model to predict continuous clinical variables. 

Since single-task learning treats each task as a stand-alone task (i.e., without considering the 

intrinsic association among different tasks), the performance of these approaches could be 

suboptimal in progression predicting of brain diseases.

As another line of e orts, the multi-task learning (MTL) paradigm (Caruana, 1997; Zhou et 

al., 2013; Jie et al., 2017; Liu et al., 2016a; Nie et al., 2017; Liu and Zhang, 2016a) has been 

widely studied for the prediction of cognitive status in the domain of brain disease analysis. 

For instance, Zhou et al. (Zhou et al., 2013) proposed to integrate temporal smoothness into 

their multi-task learning model for predicting the disease progression and selecting 

predictive markers of the progression. Jie et al. (Jie et al., 2017) developed a temporally-

constrained group sparse learning method for longitudinal analysis. Nie et al. (Nie et al., 

2017) designed a novel multi-source multi-task learning method to evaluate the disease 

status using the prior knowledge of source consistency and temporal smoothness, with the 

effectiveness validated on the progression prediction of AD suffers. Most of the existing 

multi-task learning methods focus on learning multiple related tasks (e.g., estimating 

multiple types of cognitive scores) simultaneously, and introducing particular regularization 

terms to model the prior knowledge of the longitudinal data (e.g., different tasks share a 

common subset of features). For instance, in predicting cognitive scores, we usually expect 

to discover the commonality across different time points, thereby a group lasso regularizer is 

widely used to impose the structured sparsity on a parameter matrix in the longitudinal 

analysis (Zhou et al., 2013; Jie et al., 2017). The underlying assumption for group lasso 

regularizer is that these tasks are equally related to each other. That is, when one feature is 

important for several tasks, it is also expected to be important for the remaining tasks (Zhang 

et al., 2011; Liu et al., 2016b). We argue that such an assumption is too strong, because the 

true correlation among tasks for different clinical score predictions is actually unknown in 

practice. Also, if a specific feature is only discriminant to a particular task, conventional 

group lasso regularizer is prone to ignore this feature, because the group lasso regularizer 

mainly focuses on shared features among all tasks. Thus, more properly designed structured 

sparsity induced norms are desired in the longitudinal analysis for AD progression 

prediction.

In this paper, we propose a multi-task exclusive relationship learning (MTERL) approach to 

select predictive markers for disease progression prediction. In particular, our method can 

learn the intrinsic relatedness among multiple cognitive measures from data automatically, 

without assuming them to be known in advance. Specifically, we define a novel objective 

function to utilize the relationship information from adjacent time points. We first learn a 

least square regression model by using data from each time points, and further introduce the 

new mixed structured sparsity norms to overcome the above drawback in the existing sparse 
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learning based feature selection models. For accurate identification of effective imaging 

markers, we utilize the exclusive lasso regularization which can select a specific set of 

biomarkers at different time points for disease progression prediction. different from the 

group lasso regularization, if one feature in a group is given a large weight, the other features 

in the same group will tend to be assigned with small weights or even zero. In addition, to 

reflect the intrinsic relatedness from adjacent time points, we introduce the relationship 

induced regularization that can automatically learn the relatedness among the tasks from 

data. Unlike most previous multi-task based regression models (e.g., (Zhou et al., 2013; Jie 

et al., 2017) that assumed the tasks shared a common set of features), we do not need to have 

prior knowledge about the longitudinal data and our model will learn the intrinsic 

relatedness from multiple-time-point data automatically, which is one of our major 

contributions and not investigated before.

To evaluate the efficiency of our proposed method, we perform experiments on both 

synthetic and real datasets. For real dataset, we conduct experiments on 445 subjects from 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database with MRI data. 

Specifically, each subject has baseline MRI data and two types of clinical scores (i.e., 
MMSE and ADAS-Cog) at 4 different time points (i.e., baseline, 6-month, 12-month and 24-

month). The experimental results show that the proposed method yields clearly improved 

prediction performance, compared with methods in previous studies.

The remainder of the paper is structured as follows. In Section 2, we describe the image pre-

processing method and our proposed multi-task exclusive relationship learning approach. 

The experimental settings and experimental results are then described in Section 3 and 

Section 4, respectively. In Section 5, we investigate the influence of parameters, the 

significance of selected biomarkers, as well as the limitations of our method. Finally, a 

conclusion of this paper is presented in Section 6.

2. Materials and Method

2.1. Subjects

Data used in the preparation of this study were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (http://www.adni-info.org). ADNI is funded $60 

million by the National Institute on Aging (NIA), the National Institute of Biomedical 

Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies, and non-profit organizations in 2003. One goal of ADNI is to 

verify whether the serial MRI and positron emission tomography (PET), along with other 

biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of MCI and early AD.

In this study, a total of 445 ADNI subjects with all corresponding MRI data as well as two 

types of cognitive scores (i.e., MMSE and ADAS-Cog) at 4 different time points (i.e., 
baseline, 6-month, 12-month and 24-month) are used. Specifically, there are 91 AD, 152 

NC, and 202 MCI subjects used in this study. Also, among 202 MCI subjects, there are 104 

MCI converters (MCI-C) who progressed to AD in 36 months after the baseline time, and 98 

MCI non-converters (MCI-NC) who did not progress to AD. In Table 1, we show the 

Wang et al. Page 4

Med Image Anal. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.adni-info.org


detailed demographic and clinical information of the studied subjects. More details on 

acquiring MRI data from ADNI can be found at (Zhang et al., 2011; Zhang and Shen, 

2012a). Briefly, the structural MR scan was obtained from each subject by using 1.5T 

scanners. We download the Raw Digital Imaging and Communications in Medicine 

(DICOM) MRI data from the public ADNI website (http://www.adni.loni.usc.edu), reviewed 

for quality, and automatically corrected for spatial distortion caused by gradient nonlinearity 

and B1 field inhomogeneity.

2.2. Image Pre-processing

In this study, image pre-processing is performed following the same procedures as in (Jie et 

al., 2017; Zhang et al., 2011; Zhang and Shen, 2012a). Specifically, the anterior commissure 

(AC) - posterior commissure (PC) correction was first performed for all images, followed by 

the N3 algorithm (Sled et al., 1998) to correct the intensity inhomogeneity. Subsequently, 

skull stripping was performed on structural MR images, after which the cerebellum was 

removed from the skull-stripping image. Then, the FAST method (Zhang et al., 2001) was 

applied to segment the brain into three tissues, including grey matter (GM), white matter 

(WM), and cerebrospinal fluid (CSF). After segmentation, all images were registered by 

HAMMER registration method (Shen et al., 2003) to a template with 93 manually-labeled 

Regions-Of-Interest (ROIs) (Kabani, 1998). Finally, the brain image of each subject was 

partitioned into 93 ROIs by atlas warping, and the total GM volume of each ROI was 

computed as the feature representation. In this study, we only use GM for feature extraction, 

because GM is the most affected tissue by AD and also widely used in the neuroimaging-

based analysis (Lei et al., 2017; Zhang et al., 2011). Similar to previous studies (Wee et al., 

2012; Zhou et al., 2013), we also normalize the obtained features to facilitate disease 

diagnosis and prognosis.

2.3. Multi-Task Exclusive Relationship Learning

In this paper, we focus on the problem of predicting longitudinal cognitive trajectories 

through time by using neuroimaging data. Since the cognitive scores from different time 

points can provide complementary perspectives on neuropsychological assessments, we aim 

to seek a jointly multi-task linear regression model to reveal the longitudinal associations 

between the phenotypic markers and the cognitive trajectories. In the following, we will 

elaborate the multi-task exclusive relationship learning (MTERL) model in detail.

For AD progression prediction using longitudinal phenotypic markers, we assume that the 

number of training subjects is N, and each subject has its corresponding imaging data at T 

different time points, represented as Xt = xt, 1; xt, 2; ⋯; xt, N ∈ ℛN × d where xt, n ∈ ℛ1 × d is 

a d-dimensional row vector at the t-th (t = 1, ⋯ , T) time point. Denote 

Yt = yt, 1; yt, 2; ⋯; yt, N ∈ ℛN × 1 as the disease status at the t-th time point for all training 

subjects. We denote ft(x) = Xtwt as the linear predictive function to estimate the clinical 

score from imaging data at the t-th time point, where wT ∈ ℛd × 1 is the feature weight 

vector. Let W = w1, w2, ⋯, wT ∈ ℛd × T denote the weight matrix we aim to learn for all T 
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time points, with column vector corresponding to one specific task. We thus have the 

following standard exclusive lasso model:

min
W

J(W) = 1
2T ∑

t = 1

T
Yt − Xtwt 2

2 + λ
2 ∑

i = 1

d
‖Wi‖1

2, (1)

where the first term is a square loss function that measures the loss on the training data for 

all tasks. Let h(W) = ∑i = 1
d ‖Wi‖1

2
 be the exclusive lasso term (Zhou et al., 2010), where Wi 

is the i-th row of the weight matrix W. Different from the conventional ℓ2,1-norm 

regularization which encourages the common imaging biomarkers selected for all tasks, the 

exclusive lasso regularization assumes a competitive nature among the features shared by all 

the tasks. That is, if a feature is assigned a very large weight in one task, the weights for the 

same feature in the other tasks are expected to be small or even zero. As a result, it can 

capture the consecutive changes in the brain between adjacent time points, helping to reveal 

the unique information conveyed in MRI at a particular time point.

So far, the standard exclusive lasso model has been able to capture the partial group 

structures across all the cognitive scores, i.e., each imaging marker has either small score or 

large score for each specific cognitive measure. Besides, to automatically learn the 

relationship of different prediction tasks, we propose to use the relationship induced term 
(Zhang and Yeung, 2010a) in our proposed model, defined as follows:

tr W Ω−1 WT , (2)

with Ω ≥ 0 and tr(Ω) = 1. Here, tr(·) denotes the trace of a square matrix, Ω−1 denotes the 

inverse of the matrix Ω, and Ω is defined as a task covariance matrix that will benefit 

learning on weight matrix by inducing the correct relationship in longitudinal analysis. The 

relatedness among multiple clinical scores helps reflect the smooth changes between data 

derived from adjacent time points. The constraint term Ω ≥ 0 is used to restrict Ω as positive 

semi-definite matrix, and tr(Ω) = 1 is used to penalize the complexity of Ω.

By incorporating the relationship induced term defined in Eq. (2) into Eq. (1), we formulate 

our objective function as follows:

min
W , Ω

J(W) = 1
2T ∑

t = 1

T
‖Yt − Xtwt‖2

2

+ λ
2 ∑

i = 1

d
‖Wi‖1

2 + γ
2 tr W Ω−1 WT ,

s.t. Ω ⩾ 0, tr ( Ω ) = 1,

(3)
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where λ and γ are the regularization parameters to control the balance between the 

exclusive lasso regularization and the relationship induced regularization. It is easy to know 

that when γ = 0, our method will degenerate to the standard exclusive lasso method (Zhou et 

al., 2010). In the following section, we will develop an efficient optimization algorithm to 

solve the objective function defined in Eq. (3).

2.4. Optimization

The objective function in Eq. (3) is a convex optimization problem, and we propose to solve 

it by using an alternating algorithm (see Algorithm 1). Specifically, we first optimize W with 

a fixed Ω, and then optimize Ω when W is fixed.

2.4.1. Optimizing w.r.t. W when Ω is fixed—When Ω is given and fixed, the objective 

function of Eq. (3) is convex but non-smooth, because of the non-smooth of exclusive lasso 

regularization term. Fortunately, according to (Chen et al., 2012, 2011), the smoothed 

approximation function of exclusive lasso penalty term can be rewritten as:

∇h(W) = qμ W1 V1 W1 , ⋯, qμ Wd Vd Wd , (4)

where qμ Wi = max
‖Vi‖∞

Wi, Vi − μ
2 ‖Vi‖2

2
 and μ is the positive smoothness parameter. The 

Vi(Wi) is the unique minimizer of qμ(Wi), for a fixed Wi, it can be denoted as 

min{1, max{ − 1, Wi

μ }}. Moreover, according to Chen et al. (2012, 2011), ∇h(W) is Lipschitz-

continuous with the constant Lμ = ‖XTX‖2 + ( R
μ + T)d. Hence, the i-th column gradient of 

Eq. (3) can be computed as:

∇wt
J Wt = Xt

T Xtwt − Yt + λ∇h wt + γwt Ωt
−1 . (5)

2.4.2. Optimizing w.r.t. Ω when W is fixed—When W is given and fixed, the 

optimization problem for finding Ω can be stated as:

minΩ tr W Ω−1 WT

s.t. Ω ⩾ 0, tr ( Ω ) = 1.
(6)

According to (Zhang and Yeung, 2010a; Zhang et al., 2010; Liu et al., 2016a), by taking the 

partial derivative of the Eq. (6), we can get the closed-form solution for Ω1:

1The source code for this paper is available at http://ibrain.nuaa.edu.cn/code/.
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Ω = (WTW)
1
2

tr ((WTW)
1
2)

. (7)

Algorithm 1:

Alternating optimization for solving the proposed MTERL model

Input: X,Y, λ, γ, μ;

Output: wt, Ω;

1 Initialize Calculate Lμ, set w0, v0 and let α0 = 1, t = 0;

2 repeat

3  Given Ω, optimization of wt:

4   ut = (1 − αt)wt + αtvt;

5   Compute the ∇h(ut) according to Eq. (4);

6   vt + 1 = vt − 1
αtLμ

Xt
T Xtwt − Yt + λ∇h wt + γwt Ωt

−1 ;

7   wt+1 = (1 − αt)wt + αtvt+1;

8   αt + 1 = 2
t + 1 , t = t + 1;

9  Given wt, optimization of Ω:

10   Calculate the analytical solution for Ω, according to Eq. (7);

11 until Converges;

3. Validation

To evaluate the efficacy of the proposed disease progression model, we perform experiments 

on 445 ADNI MRI data with the corresponding cognitive scores (i.e., MMSE and ADAS-

Cog), tracked over four different time points (i.e., baseline, 6-month, 12-month and 24-

month). In the experiments, we use a 10-fold cross-validation strategy to evaluate the 

performance of our proposed method and those compared methods. Specifically, the whole 

set of subjects are randomly partitioned into 10 subsets (with roughly equal size), and the 

subjects within one subset are selected as the test data each time, while all other subjects in 

the remaining nine subsets are used to train the regression models. The support vector 

regressor (SVR) and support vector classifier (SVC) with a linear kernel with a default 

parameter (i.e., C = 1) (Chang and Lin, 2012) are used for regression and classification, 

respectively. We perform another 5-fold cross-validation to choose the parameters using a 

line search strategy in the range [10−4, 10−3, ⋯, 102] in each fold. After cross-validation, we 

choose the parameters with the best performance on the training data. To avoid randomness 

during dataset partitioning, we repeat the process ten times. We report the final performance 

after averaging the results of the repeated cross-validations.

2https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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Also, to examine that the selected compact set of imaging markers by the proposed method 

are closely related to cognitive trajectories, we compare the following methods in disease 

progression domain for evaluation.

1. Lasso (Hastie et al., 2000). Lasso, being regularized by ℓ1-norm, performs 

variable selection to enhance the prediction/regression performance. So it has 

been one of the most widely used methods to estimate the future disease status 

by modeling the cognitive measures at different time points separately.

2. Multi-task Feature Learning (MTFL) (Liu et al., 2009). MTFL is considered 

to be the ℓ2,1-norm regularized regression model for joint feature selection from 

multiple tasks. One appealing feature of this method is that it encourages 

multiple predictors to share similar sparsity patterns.

3. Multi-task Exclusive Lasso (MTEL) (Zhou et al., 2010). Essentially, the 

proposed method is an extension of MTEL work without considering the 

intrinsic relatedness across multiple time points. different from the ℓ2,1-norm 

regularization, the exclusive lasso regularization models the scenario when 

variables in the same group compete with each other.

4. Multi-task Relationship Learning (MTRL) (Zhang and Yeung, 2010a). MTRL 

learns task relationship matrix under a regularization framework. This model can 

be viewed as a novel generalization of the regularization framework for single-

task learning. The task relationship matrix and model parameters (i.e., ρ and η 
which control the model complexity and relationship measure separately), can be 

learned iteratively.

Both methods are implemented with a least squared loss function. For Lasso, MTFL and 

MTEL the trade-off parameter is chosen from the set [10−4, 10−3, ⋯, 102]. The candidate set 

for both trade-off parameters in MTRL (i.e., ρ and η) and MTERL (i.e., λ and γ) is [10−4, 

10−3, ⋯, 102]. Note that unless otherwise specified, all the regularization parameters are 

tuned via another 5-fold cross-validation on the training data. We evaluate the performance 

of different methods via three criteria, i.e., normalized mean squared error (nMSE), root 

mean square error (rMSE) and Pearson’s correlation coefficient (Corr). More specifically, 

the nMSE is commonly used in multi-task learning literature (Argyriou et al., 2008; Zhang 

and Yeung, 2010b), which is the mean squared error divided by the variance of the ground 

truth. The rMSE and Corr are widely used in measuring performances of regression and 

association analysis between the predicted and the actual clinical scores (Stonnington et al., 

2010a; Duchesne et al., 2009). It is worth noting that, for the nMSE and rMSE criteria, the 

smaller the value, the better performance. For the Corr criteria, the greater the value, the 

better performance.

4. Experiment

In this section, we first show results on the simulation data, and then present the disease 

prediction results on the ADNI database with longitudinal brain MRI data.
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4.1. Results on Simulation Data

In this subsection, we use a toy example to show that our MTERL method would infer a 

correct relationship before we do experiments on real datasets. Specifically, we first generate 

the toy dataset as follows. There are three regression tasks defined as y = 4x + 13, y = −4x 
− 6 and y = 1, respectively. For each task, we randomly generate 15 points from a uniform 

distribution in [0, 10]. The corresponding function outputs are corrupted by a Gaussian noise 

process with zero mean and variance equal to 0.1. One example of the toy data is plotted in 

Fig. 1, with each color (and point type) corresponding to a particular task. Based on the 

coefficients of three regression functions, we expect the correlation between the first two 

tasks to be −1, and the correlation among other tasks to approach 0. For the proposed 

MTERL model, we empirically set λ1 to 0.01 and λ2 to 0.005.

The correlation matrix (i.e., Ω) learned by MTERL is shown in Fig. 2. Also, the estimated 

regression functions for the three tasks are y = 4.1807x+ 9.3771, y = −3.7859x – 9.2830 and 

y = 0.0622x + 0.0114. These results demonstrate that the relationship among three tasks 

learned by our proposed MTERL method is consistent with our expectation. Besides, we 

show the change of the objective function values on simulation data in Fig. 3. From Fig. 3, 

we can see that the values of the objective function decrease rapidly within twenty iterations 

and then levels off, showing the fast convergence of the proposed alternating optimization 

method in Algorithm 1.

4.2. Results on Real-world Longitudinal Data

In this section, to validate the effectiveness of our proposed MTERL method, we conduct 

experiments on the real ADNI dataset to study how the changes in the brain are associated 

with different clinical dementia scores (i.e., ADAS-Cog, and MMSE) at four time points 

(i.e., baseline, 6-month, 12-month and 24-month). Specifically, we treat the prediction of the 

cognitive scores at each time point as a learning task, so we have 4 regression tasks. We first 

partition the brain image of each subject into 93 ROIs with pre-defined template and 

compute the total GM volume of corresponding region as the feature. Thus, we obtained a 

93 dimensional feature vector for representing each subject. We then use the 93 dimensional 

representation data of 445 subjects and the corresponding cognitive scores to jointly learn 

the linear predictive models as formulated in Eq. (3).

4.2.1. Learned Relationship among Tasks—On the real-world ADNI dataset, we 

show the learned relationship (i.e., Ω in Eq. (3)) of MTRL and MTERL methods among four 

regression tasks for estimating ADAS-Cog and MMSE, respectively. The experimental 

results are shown in Fig. 4 and Fig. 5, where yellow in the color bar denotes a high positive 

correlation coefficient. From Fig. 4 and Fig. 5, one can see that the correlation of regression 

tasks at four time points shows significant difference. Also, compared with the learned 

relationship by MTERL, the relationship learned by MTRL is lower at four time points with 

respect to both ADASCog and MMSE, which is a bit counter-intuitive that multiple time 

points tend to play similar roles. Hence, exploiting the real relationships among multiple 

tasks, as we do via the regularization term in Eq. (3), could help improve the learning 

performance of individual regressors.
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4.2.2. Regression Results—In Fig. 6, we show the comparison of nMSE, rMSE and 

correlation coefficients achieved by different methods, including Lasso, MTFL, MTRL and 

MTEL, in estimating the clinical scores of ADAS-Cog and MMSE at four time points.

From the results of longitudinal cognitive scores prediction in Fig. 6, we can derive several 

interesting observations. First, the joint learning methods considering the cognitive 

progression information from multiple time points generally achieve significantly better 

performance, compared with the single task learning method (i.e., Lasso). This demonstrates 

that, the relation information among multiple time points is beneficial to the predicting of 

disease progression. Second, our proposed MTERL method, which models the intrinsic 

relation from adjacent time points automatically, consistently outperforms four competing 

methods regarding nMSE, rMSE and Corr. Specifically, MTERL achieves the average (i.e., 
across four time points) nMSE of 0.56 and 0.61 for estimating ADAS-Cog and MMSE 

scores, respectively. Also, MTERL achieves the average rMSE of 0.76 and 0.79 for 

estimating ADAS-Cog and MMSE scores, respectively. These results validate the efficacy of 

our proposed method, which not only considers the partial group structures within 

phenotypic markers but also models the correlations among cognitive measures in jointly 

estimating the clinical scores based on the longitudinal analysis. Finally, it is worth noting 

that, Fig. 6 indicates that estimating later time point (i.e., M24) scores often achieves better 

performance than estimating earlier time point scores. The possible reason for high 

performance at the late time point is that the relationship between imaging features and 

clinical scores becomes much stronger with the progress of disease or brain aging (e.g., 
atrophy in the brain is more obvious in advanced disease), and thus the related features are 

more distinctive and correlated to the clinical scores. The McNemar test (Dietterich, 1998) is 

used to evaluate the statistical significance of the difference between regression 

performances of two methods. We report the p-values in Fig. 6 and mark statistically 

significant differences (p < 0.05) with the asterisk (*).

We also show the scatter plots for the predicted values versus the actual values for ADAS-

Cog and MMSE on the testing data in Fig. 7 and Fig. 8, respectively. Specifically, for each 

time point, we learn a linear SVR on training subjects and estimate ADAS-Cog and MMSE 

scores for testing subjects, respectively. From Fig. 7 and Fig. 8, we can observe that the 

predicted values achieved by our MTERL method are highly correlated to the actual clinical 

scores, manifested as high Corr values. Also, Fig. 7–8 show that the overall performance for 

estimating ADAS-Cog scores is better than that for estimating MMSE scores, which is 

similar to the previous studies (Zhou et al., 2013; Nie et al., 2017). These results further 

validate the effectiveness of the proposed MTERL method in estimating clinical scores using 

longitudinal data.

4.2.3. Results of MCI Conversion Prediction using Informative Biomarkers—
In this set of experiments, we conduct the classification task of predicting the future 

conversion of MCI patients based on only the baseline MRI data, where the informative 

biomarkers discovered in the regression experiments are fed into a particular classifier. 

Specifically, for each competing method, we first build a prediction model using 

longitudinal training MRI data at four time points to select the important brain regions (with 

respect to ADAS-Cog/MMSE scores). Then, we choose the top cumulative absolute weight 
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across different time points as the important brain regions for the multi-task-based 

classification methods. It is worth noting that, for the Lasso method that learns at four time 

points separately, we select only the brain regions with higher absolute weights at the 

baseline for subsequent classification. Finally, we train the corresponding support vector 

machine (SVM) classifiers with different numbers of above-selected features (w.r.t., brain 

regions) from the baseline training MRI data, respectively. In Figs. 9–10, we show the 

classification accuracy using different numbers of selected features on the baseline MRI 

data.

From Figs. 9–10, we can clearly see that the prediction results of our MTERL method 

consistently outperform the competing methods in nearly all the test cases. Also, MTERL 

can achieve the best performance with a smaller number (i.e., 15) of selected features, in 

comparison to other methods. The underlying reason for the superiority of our MTERL 

method over four competing methods could be listed as follows. Lasso independently 

estimates the cognitive measures at different time points, which neglects the correlations 

across different time points. Although the MTFL method can learn the underlying 

relationship among the prediction tasks at different time points, it simply assumes that these 

tasks are closed to each other by using the l2,1-norm, while such assumption is too strong 

and may not hold true in practice. Also, unlike MTRL and MTEL which consider one of the 

partial group structures within longitudinal phenotypic markers or the correlations shared 

among different tasks, the proposed MTERL method captures all the valuable information 

(i.e., partial group structures and correlation shared among different tasks) for AD 

progression prediction.

We also summarize the performance of different methods in Table 2. We further use the 

McNemar’s test (Dietterich, 1998) (with the significance level at 0.05) to assess whether the 

difference in AUC values between our proposed method and each competing method is 

significant, with the corresponding p-values reported in Table 2. From Table 2, we can see 

that the proposed MTERL method consistently outperforms the compared methods in all 

performance measures. For instance, the ACC value obtained by our method is 71.98% in 

the conversion of MCI classification, which is better than the second-best result 69.28% 

yielded by MTFL method with guidance from ADAS-Cog. Also, our method achieves a 

classification accuracy of 73.04%, a sensitivity of 78.29%, and a specificity of 68.89% with 

the guidance from MMSE. These results are consistently better than other methods on each 

performance measure. In addition, Table 2 also indicates that the joint analysis of 

longitudinal data would be beneficial to use the complete information for the identification 

of relevant imaging markers (Zhou et al., 2011; Wang et al., 2012b).

4.2.4. Informative Brain Regions—It is meaningful to identify a subset of biomarkers 

which are highly correlated to the AD progression. Therefore, we investigate the top ten 

brain regions identified by our proposed method in this section. It is worth noting that, 

because the selected brain regions are different in each 10-fold cross-validation, we choose 

the cumulative absolute weight (Yahata et al., 2016) as an indicator of the brain region 

contribution in the regression task. Fig. 11 shows the top 10 identified important brain 

regions selected by the proposed method and those selected brain region names are listed in 

Table 3.
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From Table 3, we can see that the most informative brain regions that are commonly selected 

in two regression tasks include, the corpus callosum, hippocampus and amygdala. In 

previous studies (Lei et al., 2017; Jie et al., 2017; Wang et al., 2012c; Zhang and Shen, 

2012a; Zhou et al., 2013; Pan et al., 2018), these regions are reported to be highly associated 

with the Alzheimer’s disease. Meanwhile, the hippocampus plays an important role in 

identifying brain conditions through AD modeling and measuring the cognitive outcomes 

such as ADAS-Cog and MMSE, which has been confirmed by existing works (Derflinger et 

al., 2011; Knafo et al., 2009; Convit et al., 2000). In addition, the selected brain regions such 

as uncus and middle temporal regions are also sensitive to AD diagnosis, which also has 

been observed in previous studies (Zhou et al., 2013; Zhang et al., 2012; Braak and Braak, 

1991; Delacourte et al., 1999). To sum up, the identified imaging markers are highly 

suggestive and effective for tracking the progression of AD, since it strongly agrees with the 

existing research findings.

4.2.5. Comparison with State-of-the-Art Methods—Furthermore, we compare the 

results achieved by our method with several recent state-of-the-art results reported in the 

literature studying the relationship between cognitive scores and imaging markers (i.e., 
clinical score regression based on MRI data). We list the details of each method and the 

corresponding results in Table 4. From Table 4, we can see that our method obtains 

competitive results in most cases. Specifically, our method achieves the average correlation 

coefficient of longitudinal analysis with respect to ADAS-Cog and MMSE scores are 0.664 

and 0.625, respectively. It is worth noting that, although a previous study in (Zhang and 

Shen, 2012a) reported a higher correlation coefficient, a relatively smaller number of 

subjects with multi-modality data are used in their work.

5. Discussion

In this section, we first investigate the influence of parameters. Then we analyze the 

effectiveness of the biomarkers identified by the proposed method. Finally, we further 

discuss the limitations of the proposed method.

5.1. Influence of Parameters

There are two important parameters (i.e., λ and γ) in our proposed method, which is used to 

balance the relative contribution of two regularization terms. Now we investigate the 

influence of these two parameters on the performances of our method in the regression tasks 

with respect to ADAS-Cog and MMSE scores. Specifically, we vary the value of λ and γ 
from the range {10−4, 10−3, ⋯, 102}, and record results achieved by our method in both 

tasks of ADAS-Cog and MMSE score regression in Fig. 12 and Fig. 13, respectively. From 

Fig. 12 and Fig. 13, we can see that our method achieves relatively stable results using 

different parameters, demonstrating that our method is not very sensitive to parameters.

5.2. effectiveness of MRI Biomarkers

The correlation analysis between biomarkers and the clinical scores reveals the effective for 

tacking the progression of AD, which has been widely used in medical imaging analysis 

(Morgan et al., 2017). In Fig. 14 and Fig. 15, we show the relationship between the MMSE 
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score and the top two biomarkers listed in Table 3. From Fig. 14 and Fig. 15, we can see that 

the selected biomarkers by the proposed method are highly associated with the MMSE 

scores at multiple time points. Specifically, the values of MRI imaging in the region of 

corpus callosum have a significant negative correlation with MMSE scores, while the values 

of hippocampal formation left show a positive correlation with MMSE scores. This 

correlation indicates that these biomarkers are sensitive to the clinical status of AD, and have 

the potential to be used as a diagnostic indicator.

5.3. Limitations

There are still several limitations to be considered in this study. First, the current study 

requires each subject has complete data, (i.e., subjects with MRI data and clinical scores at 

each time point), which limits the size of subjects that can be used. For example, while there 

are more than 400 MCI subjects in the ADNI dataset, there are only 202 MCI subjects 

having complete MRI data and the corresponding ADAS-Cog and MMSE scores at four 

time points (i.e., BL, M06, M12, and M24). Second, in the current study, we performed 

experiments to estimate the clinical scores based on only MRI data. Actually, there exist 

many other data modalities (e.g., PET and CSF) for subjects in ADNI. It is interesting to 

apply our method to disease progression prediction using multimodality data for further 

performance improvement. Third, in the practical prediction of AD progression, besides 

ADAS-Cog and MMSE scores, the sub-scores of clinical variables or other clinical variables 

are generally acquired, e.g., the clinical dementia rating scale sum of boxes (CDR-SOB) and 

the auditory verbal learning test (AVLT). Since the clinical variables are helpful to reflect the 

status of AD progression, using more continuous clinical values may help discover more 

robust disease-relevant markers, which will also be one of our future works.

6. Conclusion

In this paper, we proposed a novel multi-task exclusive relationship learning model, aiming 

to reveal the relationship among prediction tasks for cognitive measures at different time 

points based on longitudinal neuroimaging markers. Specifically, an exclusive lasso 

regularization and a relationship induced regularization are used to encourage the partial 

group structure feature selection among the longitudinal data and to capture the relationship 

among tasks, respectively. To efficiently solve the proposed objective function, we develop 

an iterative algorithm with a closed form solution in each iteration. We have proved the 

convergence of our algorithm on simulation data. Also, experimental results on the real 

ADNI dataset with MRI data demonstrate that our method outperforms those state-of-the-art 

approaches in both tasks of estimating clinical scores and brain disease classification.
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Highlights

• A relationship induced regularization models the relationship among tasks at 

different time points for estimating clinical measures based on longitudinal 

imaging data;

• An exclusive lasso regularization enables partial group structure feature 

selection among tasks;

• Extensive experiments on both synthetic and real datasets demonstrate the 

effectiveness of the proposed method.

Wang et al. Page 18

Med Image Anal. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Illustration of the simulation data, with each color denoting data points in a specific task.
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Figure 2: 
The learned task correlation matrix.
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Figure 3: 
Convergence of the objective function on simulation data.
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Figure 4: 
The correlation matrix learned by our MTRL method among four regression tasks for 

estimating (a) ADAS-Cog and (b) MMSE, respectively. Note that each regression task is 

corresponding to a particular time point. BL: baseline; M06: 6 months after baseline; M12: 

12 months after baseline; M24: 24 months after baseline.
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Figure 5: 
The correlation matrix learned by our MTERL method among four regression tasks for 

estimating (a) ADAS-Cog and (b) MMSE, respectively. Note that each regression task is 

corresponding to a particular time point. BL: baseline; M06: 6 months after baseline; M12: 

12 months after baseline; M24: 24 months after baseline.
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Figure 6: 
Comparison of different methods on longitudinal ADAS-Cog and MMSE prediction in 

terms of (a) normalized mean square error (nMSE), (b) root mean square error (rMSE) and 

(c) Pearson’s correlation coefficient (Corr). BL: baseline; M06: 6 months after baseline; 

M12: 12 months after baseline; M24: 24 months after baseline.
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Figure 7: 
Scatter plots of actual ADAS-Cog scores versus predicted values on testing data achieved by 

our proposed method based on MRI features at different time points. (a) Baseline (BL), (b) 6 

months (M06), (c) 12 months (M12) and (d) 24 months (M24). Corr: Correlation coefficient 

between estimated scores and actual scores.
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Figure 8: 
Scatter plots of actual MMSE scores versus predicted values on testing data achieved by our 

proposed method based on MRI features at different time points. (a) Baseline (BL), (b) 6 

months (M06), (c) 12 months (M12) and (d) 24 months (M24). Corr: Correlation coefficient 

between estimated scores and actual scores.
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Figure 9: 
Classification results achieved by different methods using features selected from the 

corresponding regression model for ADAS-Cog estimation.
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Figure 10: 
Classification results achieved by different methods using features selected from the 

corresponding regression model for MMSE estimation.
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Figure 11: 
The important brain regions identified by the proposed method when estimating clinical 

scores. (a) ADAS-Cog score, (b) MMSE score.

Wang et al. Page 29

Med Image Anal. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 12: 
Regression performance achieved by our method when estimating ADAS-Cog score with 

different criterias. (a) nMSE, (b) rMSE and (c) Corr.
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Figure 13: 
Regression performance achieved by our method when estimating MMSE score with 

different criterias. (a) nMSE, (b) rMSE and (c) Corr.
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Figure 14: 
Correlation between selected biomarker (i.e., corpus callosum) and MMSE score at different 

time points. (a) Baseline (BL), (b) 6 months (M06), (c) 12 months (M12) and (d) 24 months 

(M24).
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Figure 15: 
Correlation between selected biomarker (i.e., hippocampal formation left) and MMSE score 

at different time points. (a) Baseline (BL), (b) 6 months (M06), (c) 12 months (M12) and (d) 

24 months (M24).
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Table 1:

Demographic information of the studied subjects at different time points. The values are denoted as Mean

±Stand Deviation (SD). BL: Baseline; M06: 6 month after baseline; M12: 12 month after baseline; M24: 24 

month after baseline.

AD
(n = 91)

MCI-C
(n = 104)

MCI-NC
(n = 98)

NC
(n = 152)

Male/Female 53/38 66/38 68/30 76/76

Age 75.4 ± 7.5 75.1 ± 6.8 74.3 ± 7.2 76.1 ± 4.8

Education 15.1 ± 2.9 15.8 ± 3.1 16.2 ± 2.9 16.0 ± 2.9

MMSE (BL) 23.2 ± 2.0 26.7 ± 1.7 27.6 ± 1.7 29.2 ± 0.9

MMSE (M06) 22.3 ± 3.2 25.4 ± 2.7 27.7 ± 2.1 29.1 ± 1.0

MMSE (M12) 21.0 ± 4.3 25.0 ± 2.7 27.8 ± 2.5 29.2 ± 1.1

MMSE (M24) 18.6 ± 6.0 23.1 ± 4.2 27.2 ± 3.2 29.0 ± 1.2

ADAS-Cog (BL) 18.6 ± 5.7 12.9 ± 4.0 9.7 ± 4.2 5.8 ± 2.9

ADAS-Cog (M06) 20.6 ± 6.5 13.6 ± 5.1 9.7 ± 4.1 6.0 ± 3.0

ADAS-Cog (M12) 21.9 ± 8.2 14.4 ± 5.8 9.4 ± 4.9 5.5 ± 2.8

ADAS-Cog (M24) 27.5 ± 11.8 17.6 ± 8.0 10.7 ± 5.7 5.7 ± 3.1
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Table 2:

The average performance of different methods in predicting the conversion of MCI patients at their best 

dimensions. ACC=Accuracy; SEN=Sensitivity; SPE=Specificity; AUC= Area Under Curve.

Method Lasso MTFL MTRL MTEL MTERL(ours)

ADAS-Cog

ACC(%) 67.83 ± 3.14 69.28 ± 2.15 68.41 ± 3.61 68.69 ± 5.29 71.98 ± 3.35

SEN(%) 73.53 ± 8.32 72.94 ± 10.27 74.71 ± 16.97 72.94 ± 16.69 80.39 ± 11.14

SPE(%) 61.67 ± 11.35 65.00 ± 10.87 60.56 ± 13.66 62.78 ± 14.65 65.04 ± 14.25

AUC(%) 77.31 ± 7.54 79.58 ± 7.80 79.75 ± 5.28 78.57 ± 6.27 81.20 ± 5.07

p-value 0.0305* 0.0062* 0.0415* 0.0416* –

MMSE

ACC(%) 68.69 ± 4.05 70.72 ± 2.79 70.73 ± 2.15 69.57 ± 3.97 73.04 ± 3.01

SEN(%) 71.18 ± 8.92 77.65 ± 12.75 77.06 ± 9.84 75.88 ± 12.20 78.29 ± 10.73

SPE(%) 65.00 ± 8.70 62.22 ± 13.69 62.78 ± 9.74 61.67 ± 12.33 68.89 ± 7.71

AUC(%) 75.38 ± 4.96 79.30 ± 2.77 79.30 ± 2.77 76.16 ± 3.07 80.81 ± 2.95

p-value 0.0105* 0.0193* 0.0193* 0.0386* –
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Table 3:

The most important ten ROIs identified by the proposed method.

ADAS-Cog

Index ROI Name Related Studies

82 corpus callosum (Lei et al., 2017; Jie et al., 2017)

69 hippocampal formation left (Zhang and Shen, 2012a; Zhou et al., 2013)

87 angular gyrus left (Wang et al., 2012c; Jie et al., 2017)

48 middle temporal gyrus left (Lei et al., 2017; Zhou et al., 2013)

30 hippocampal formation right (Wang et al., 2012c; Zhang and Shen, 2012a)

83 amygdala right (Zhou et al., 2013; Wang et al., 2012c)

76 amygdala left (Wang et al., 2012c; Lei et al., 2017)

62 inferior temporal gyrus left (Lei et al., 2017; Zhou et al., 2013)

74 lingual gyrus right (Zhou et al., 2013; Wang et al., 2012c)

46 uncus left (Zhang and Shen, 2012a; Jie et al., 2017)

MMSE

Index ROI Name Related Studies

82 corpus callosum (Lei et al., 2017; Jie et al., 2017)

69 hippocampal formation left (Wang et al., 2012c; Zhang and Shen, 2012a)

74 lingual gyrus right (Zhou et al., 2013; Lei et al., 2017)

48 middle temporal gyrus left (Lei et al., 2017; Jie et al., 2017)

83 amygdala right (Wang et al., 2012c; Zhou et al., 2013)

87 angular gyrus left (Zhang and Shen, 2012a; Wang et al., 2012c)

80 middle temporal gyrus right (Wang et al., 2012c; Jie et al., 2017)

30 hippocampal formation right (Zhou et al., 2013; Lei et al., 2017)

5 precentral gyrus right (Lei et al., 2017; Zhou et al., 2013)

55 precentral gyrus left (Zhou et al., 2013; Jie et al., 2017)

Med Image Anal. Author manuscript; available in PMC 2020 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 37

Table 4:

Comparison with the state-of-the-art methods in terms of correlation coefficient in clinical score regression.

Method Features Subjects ADAS-Cog MMSE

(Duchesne et al., 2009) Baseline MRI 75AD + 49MCI + 75NC – 0.310

(Fan et al., 2010) Baseline MRI 52AD + 148MCI + 64NC 0.520 0.570

(Yan et al., 2015) Baseline MRI 172AD + 349MCI + 197NC 0.644 ± 0.026 0.555 ± 0.008

(Zhang and Shen, 2012a) Baseline MRI 45AD + 91MCI + 50NC 0.609 ± 0.014 0.504 ± 0.038

(Stonnington et al., 2010b) Baseline MRI, CSF 113AD + 351MCI + 122NC 0.48 0.57

(Liu and Zhang, 2016b) MRI, Age, Gender, Education (Years) 143AD + 271MCI + 185NC 0.59 0.57

(Zhang and Shen, 2012b) Baseline, M06, M12, M18, M24 MRI, FDG-
PET 38MCI-C + 50MCI-NC 0.777 ± 0.027 0.786 ± 0.013

(Jie et al., 2017) Baseline, M06, M12, M24 MRI 91AD + 202MCI + 152NC 0.639 ± 0.008 0.613 ± 0.010

MTERL(ours) Baseline, M06, M12, M24 MRI 91AD + 202MCI + 152NC 0.664 ± 0.025 0.625 ± 0.032
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